OpSIS Silicon Photonics Sub-System Design workshop

Syllabus: (preliminary)

[
Day 1 – Intro to OpSIS- IME PDK and design	 Introduction to Silicon Photonics and OpSIS OpSIS-IME Fabrication process description, Process Design Kit in Mentor Graphics, rules, GDS layers, Library Schematic Driven Layout using Mentor Graphics Pyxis System modelling using Lumerical INTERCONNECT
Day 2 – System design and mask layout	 System design of a WDM optical link: optical transmission spectrum, optical link parameters (ER, IL, cross-talk, etc.), time domain: eye diagrams, bit error rate Mask Layout tutorial using Mentor Graphics Pyxis: cell instances, cell devices; circuit layout using interactive routing (iRoute); Interactive and sign-off Design Rule Checking (DRC) using Mentor Graphics Calibre Mentor Graphics Pyxis scripted "PCell" devices, tutorial on writing a ring resonator device Design For Manufacture (DFM): Tiling using Mentor Graphics
Day 3 – Optics and coupling	 Waveguides, directional couplers, bends, grating and edge couplers Directional Couplers Tutorial using Lumerical MODE Grating Couplers Tutorial 2D FDTD, 3D FDTD with GDS import Fiber packaging
Day 4 – Detectors and PN junction phase modulator	 Ge PIN detector; IME detector performance; layout PN junction basics: junctions and waveguides to find Δn, alpha dB/cm versus voltage; Matlab 1D compact model; performance variations with parameters PN junction and modulator modelling tutorial; Lumerical 2D MODE/DEVICE
Day 5 – Ring and Travelling-wave Modulators, Design for Test	 Ring modulators: optical transfer function vs. Δn; critical coupling, single-bus vs. double-bus, choosing the right coupling coefficient; insertion loss and extinction ratio Lumerical INTERCONNECT ring modulator Mach-Zehnder Interferometer modulator: optical transfer function for Δn and alpha; Microwave electrode impedance, velocity, microwave loss, velocity matching for travelling wave modulators; Best practices for design, layout, and testability Test setup: Parts list and description of automated grating-coupled system